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To my mother on the occasion of her 81 st birthday 

It is shown that in a three-dimensional Bravais lattice at most 5 different cells based on the shortest 
three non-coplanar translations (Buerger cells) may exist. Their mutual relationship is found and two 
procedures are proposed to find all these cells if one of them is known. That cell which corresponds to 
the reduced quadratic form is indicated. For any of the 14 types of Bravais lattice the number of different 
Buerger cells is ascertained. 

Introduction 

It has been noted by several authors that the Buerger 
cell, i.e. the cell based on the shortest three non-copla- 
nar translations, is not unique in many cases and some 
particular ambiguities have been demonstrated (e.g. 
Santoro & Mighell, 1970). However, the general con- 
ditions under which these ambiguities can occur have 
not yet been found nor is it known how many different 
Buerger cells may exist in an arbitrary lattice. A general 
solution of this problem is given in the present paper. 
Assuming that one of the Buerger cells of a Bravais 
lattice is given, two different ways are proposed for 
ascertaining the number of different Buerger cells of 
this lattice and the relationship among them. Table 1 
shows that there are lattices with 1, 2, 3, 4 or 5 different 
Buerger cells, but no lattice can have a greater number. 
Moreover the Table indicates which of the Buerger 
cells is the Niggli (1928) cell, i.e. the cell based on the 
reduction theory of the positive definite quadratic 
forms. It also contains the matrices by means of which 
any Buerger cell may be converted into the Niggli cell; 
this is an alternative to Santoro & Mighell's (1970) pro- 
cedure. The significance of the Niggli cell is in its 
uniqueness and in the possibility that it can be used for 
determining the type of lattice. The application of the 
Niggli forms shows that the ambiguity of the Buerger 
cells is not an exceptional case since it occurs in 7 of the 
14 types of Bravais lattice. 

In addition it will be shown that the algorithm for 
determining the Buerger cell proposed by Buerger 
(1957, 1960) can be substantially quickened if the func- 
tion entier is applied. As far as the terminology is con- 
cerned we avoid the term 'reduced cell' entirely since 
it has been used in different senses and could easily 
cause further misunderstanding. 

Buerger cell 

For our purposes it is convenient to deviate from the 
usual matrix representation 

( S~ $22 S~3~ 
$23 S~ Slz] 

of  a cell. Instead we shall  use a sequence  o f  six real n u m -  
bers 

A , ~ ,  C, ~, ~, ~ (1) 
defined by 

so that 

A = a 2, B = b 2, C = c 2, 
f f = 2 b . c ,  r / = 2 a . c ,  f f = 2 a . b  (2) 

A = $11, B =  Szz, C =  $33, 
=2S23, r /=2S13,  ~=2S12.  

The sequence (1) will be referred to as the character- 
istic of the cell in question. There are good reasons for 
this different notation. We shall need the double in- 
dices in other places and we also hope that the tables 
will be easier to survey, so that it will be possible to run 
through them more quickly. 

We say that (1) is a characteristic of the lattice L, if 
it is a characteristic of a primitive cell of this lattice. We 
say that it is a Buerger characteristic of L, if it is a 
characteristic of a Buerger cell of L. 

A cell may always be labelled in such a way that the 
following conditions are fulfilled: 

1. A < B < C ;  
2. if A =B,  then I~1 -< I~l; 
3. if B =  C, then I~1 -< Ill; 
4. it holds that e i t h e r ~ > 0 ,  r / > 0 ,  ~ > 0 ,  

o r ~ < 0 ,  r / < 0 ,  ~ < 0 .  (3) 

If this occurs the characteristic (1) is said to be normal- 
ized. We say that we normalize the characteristic of a 
cell U, if we change it (if necessary) by relabelling Uso 
that it becomes normalized. This may be done by means 
of this simple Algorithm N. 

Algorithm N 

N1. I f A > B  or A = B ,  1~1>I~1, change 
(A,~) ~ (B,~).* 

N2. If B >  C or B = C ,  I~1 > ICI, change 
(B, r / ) ~  (C, Q and go to the point N1. 

N3. If ~r/~'> 0, put I~[ -+ ~, I~1 -+ ~, ICI-+ if; 
otherwise put - I~ l  ~ ~, -1171 ~ r/, -ICI ~ C. 

* N1 is equivalent to the following Algol 60 statement: 
begin if A > BvA = Baabs(~) > abs(r/) then begin p: = A ; A ; = B; 
B:=p; p:=~; ~:=r/; r/:=p end end. 
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The normalized characteristic of a cell is unique. 
Whether a cell is a Buerger one or not can be ascer- 

tained by the following: 
Theorem 1 (Buerger, 1960): Let (1) be the normalized 

characteristic of a primitive cell U. Then U is a Buerger 
cell if and only if the following inequalities hold: 

I~1 --- B ,  Iql --- A ,  I~l -< A 

¢ + r I + f  +A+B>_O.  (4) 

Gruber (1970) gave a more general criterion where 
the interaxial angles need not be all acute or all ob- 
tuse and the primitiveness of the cell is not assumed. 

The starting point of our procedures will be a normal- 
ized Buerger characteristic of the lattice under investiga- 
tion. It may be easily recognized since it must fulfil con- 
ditions (3) and (4) which are also sufficient. It can be ob- 
tained by means of the algorithm proposed by Buerger 
(1960). This algorithm is based on the fact that if two 
vectors r, s satisfy the inequalities 

21r. s l > r 2 > 0 ,  

then an integer m can be found such that 

21r. ( s -  mr)[ _< r z . 

This integer m is determined in the Buerger algorithm 
in a succesive way by subtracting the value r 2 from the 
number It .  sl so many times until the change of sign 
occurs. But m may be picked out immediately by put- 
ting 

m = entier ( r .  s/r z + ½). 

The function entier x used in Algol 60 means the 
greatest integer which is not greater than x ( 0 < x -  
entier x <  1). In this way the procedure may be quick- 
ened considerably when we start 'far'  from the Buerger 
cell. For the convenience of the reader the complete al- 
gorithm is formulated here in our notation with all de- 
tails so that it can be directly transcribed into a computer 
language. 

Theorem 2. Let (1) be a characteristic of the lattice 
L, let us carry out Algorithm B. Then the sequence (1) 
with the new values is a normalized Buerger charac- 
teristic of the lattice L. 

Algorithm B 

B1. Carry out algorithm N. 
B2. If 1~1 > B, put 

entier ((~ + B)/2B) - + j , *  
C + j Z B - j ~  --+ C ,  

- 2jB -+ ~ ,  
rl --j~ --+r ! 

and go to the point B1. 

* Or alternatively sign ~ ~ j ,  where sign x = 1 for x > 0 and 
sign x = i for x < 0. 

B3. If [r/l > A, put 

entier ((r/+ A )/2A) ~ j ,~f 
C + j2A - j q  --+ C ,  
¢ - j (  .---~¢, 

~l - 2j A "+ rl 

and go to the point B 1. 

B4. If 1(I > A, put 

entier (((+ A )/2A) ~ j ,:1: 
B + j 2 A  - j (  -+ B ,  
C- - j r  I .--~¢, 
( - 2 j A  --+( 

and go to the point B 1. 

B5. I f  ~ + q + ~ + A + B < O ,  put 

entier (((~ + ~1 + ( +  A + B)/2(A + B+Q))  -+ j ,{} 
C + j2(A + B +  O - J ( ~  + q) ~ C ,  
¢ - j ( 2 B + O  ---~ ¢ ,  
r l - j ( 2 A  + 0  -+ rl 

and go to the point B 1. 

The use of the function sign instead of entier simpli- 
fies the calculation, but increases the number of steps. 

System of all Buerger cells 

As has been already mentioned, the Buerger cell is 
in general not unique. The number of different Buerger 
cells in a lattice will be referred to as the index of this 
lattice. Since the normalized characteristics correspond 
in a unique way to the primitive cells, the index of a 
lattice is equal to the number of normalized Buerger 
characteristics of this lattice. 

Our main task is to obtain all Buerger cells if one of 
them is known and to ascertain the relationship among 
them. In other words we want to find all normalized 
Buerger characteristics of the lattice if one such charac- 
teristic is given. Two ways are shown how to achieve 
this. The first is more 'theoretical' and yields a deeper 
insight into the problem. The second is rather 'numer- 
ical' and can be modified for a computer. 

Theorem 3. Let (1) be a normalized Buerger charac- 
teristic of the lattice L, let the numbers ik, conditions 
Ck, expressions ~,, ,  qkm, ~km and matrices Mkn (k=  
1 , . . . , 2 8 ;  m = l  . . . .  ,ik; n = 2  . . . .  ,ik) be given by 
Table 1, where p = B/A, v = ( B -  A)/A. Then the follow- 
ing is true: 

(a) If such integers j ,  h (1 < j  <28;  1 <h<i l )  and real 
numbers p, q (0 < p < q < A) exist that the condition 

t Or sign r/--+ j. 
:l: Or sign ~ --~ j. 
§ Or sign (~+r/) --+j. 
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k 

1 

2 

,3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

Table 1. Relationships among Buerger cells 

~kl r/kt ~kl 
k ° ° °  . . . . .  ° 

~ktk ~ktk ~ktk 
A = B < _ C  q q A 
or A < B = C  0 - q  - A  
A = B <  C q/2 q A 

- -  q / 2  - -  q / 2  - -  A 

A = B <_ C q --p/2 q A 
p/2 q A 

- p / 2  - q + p / 2  - -A  
A < B < C  q A q 

0 - A  - q  
q < A = B < C q--p/2  A q 
or A < B < C p/2 A q 
A = B <  C q A q/2 

--q/2 - A  - q / 2  
A = B <  C q A p/2 

- -  q + p / 2  - A - p / 2  

A = B < C q A q - p / 2  
--p/2 -- A -- q +p/2  

A < B = C q - p ~ 2  q A 
or q < A < B < C  p/2 q A 
A <B<<_ C B + I t ( p - q )  p A 

- B - vp + Itq - p -- A 
q = A < B = C  B A q 
or A < B < C  - -B  - - A + q  - q  

- - B + q  - A  - q  
A < B = C  vp+q  q A 

--vp --q - A  
A < B = C  B A/2 A 

- -B  - A / 2  - -A/2  
- B + A / 2  - -A/2  - A  

q < A < B = C  B q q 
- - B  0 - - q  

q < A < B = C  B q/2 q 
- -  B - -  q / 2  - -  q/2 

q < A < B = C  - - B + A - 2 q / 3  - A + q / 3  - A + q / 3  
-- B +  q/3 - 2q/3 - A + q/3 

q < A < B = C -- B + A/2 - q/6 -- A/2 - q/6 - A + q/3 
- - B + q / 3  - A / 2 - q / 6  - A / 2 - q / 6  

q < A < B = C  B q - p ~ 2  q 
B p/2 q 

- -B  - p / 2  - q + p / 2  
q < A < B = C  - - B + A - p / 6 - q / 2  - - A - p / 6 + q / 2  - A + p / 3  

- -  B + p / 3  - p / 6 -  q / 2  - A - p / 6  + q/2 
- B - p ~ 6  + q / 2  - p / 6  - q / 2  - A + p / 3  

q < A < B = C  B A - q ~ 2  A 
B q/2 A 

- -  B - -  q / 2  - -  A + q/2 
- -  B + q / 2  - -  q / 2  - -  A 

- - B + A - q / 2  - A + q / 2  - A  
q < A < B < C B q- -p /2  q 

B p/2 q 
q < A < B < C  - B + A + p / 2 - q  - A + p / 2  - A - p + q  

- - B + p / 2  - q + p / 2  - A  - p + q  
q < A < B < C  B A - q ~ 2  A 

B q/2 A 
- -  B + q / 2  - -  q / 2  - -  A 
- B +  A- -q /2  - A + q/2 - A 

A < B < C  B A/2 A 
- - B + A / 2  - A / 2  - A  

A < B < C  B A + p - q  p 
- B  - A + q  - p  

A < B < C  vp+q  A q 
--vp - -A --q 

A < B < C B +  l t ( p - q )  A p 
- - B -  vp+ llq - -A --p 

A < B <  C B+p--I~q A + p - q  A 
- B +  A + vq - A - p + q  - A  

M k 2  
° , °  

Mk,k 

N 
100/110/001- 
N 
110/010/00i 
N 
100/110/001 
110/100/00) 
N 
lOO/O1"O/lOl 
N 
100/010/101" 
N 
100/010/101 
N 
1oo/oi0/lOl 
N 
1oo/olO/lOl 
N 
100/11"0/001 
N 
100/110/00I" 
N 
lOO/Olo/oll 
100/01-0/101 
N 
100/110/001- 
N 
100/01-1/00i 
100/110/00I 
N 
loo/o1-o/o1-T 
N 
IO0/OTT/O0i 
N 
100/010/iq-l 
N 
100/1-i-i/001 
N 
100/010/011- 
lOO/OII/o1-o 
N 
lOO/11i/OlO 
100/010/Ti-i 
N 
100/010/011" 
lOO/Oii/o1o 
100/110/111 
100/110/001" 
N 
100/010/01I" 
N 
loo/olo/T11 
N 
100/010/011" 
100/110/111 
100/110/00T 
N 
100/110/00T 
N 
lOO/O1"O/OII 
N 
lOO/O1"O/101 
N 
lOO/OI0/101 
N 
100/110/00T 
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C s is fulfilled and the equalities 

~=~s~, r/=r/,,, ~ s ~  (5) 
hold, then 

(~) the index of the lattice L is equal to i s which is 
greater than 1 ; 

. . . .  . . . . .  . . . . . . . . . . . . . .  

A, B, C, ~su, rbu, (su 
are all normalized Buerger characteristics of L; 

(~) the matrix Ms, (n = 2 , . . . ,  is) transforms the cell 
characterized by 

A, B, C, 4s,, r/s,, (s, 

into the cell characterized by 

A, B, C, 4st, r/st, ~'st • 

(b) If the numbers j, h, p, q with the properties re- 
quired in point (a) do not exist, then the index of the 
lattice L is equal to 1 so that (1) is the only normalized 
Buerger characteristic of L. 

In simpler words: If we can identify the triplet 4, r/, ( 
with a triplet of Table 1 in such a way that the numbers 
p, q satisfy 0 < p < q_< A and the corresponding condi- 
tion is fulfilled then the lattice has more than one Buer- 
ger cell. The normalized characteristics of all Buerger 
cells are listed in the group of rows to which the triplet 
4, r/, ( belongs. If this identification is not possible, the 
Buerger cell of the lattice is unique. 

Three consequences follow immediately from Theo- 
rem 3. The first is that the index of any Bravais lattice 
is not greater than 5. Since all cases from Table 1 really 
occur, a further statement can be made: if i is an integer 
fulfilling 1 _<i< 5, then a lattice with the index i may be 
found. 

Secondly, Table 1 shows that in a given Bravais 
lattice there may be Buerger cells with all acute angles 
as well as Buerger cells with all obtuse angles. This 
means that the division of Bravais lattices into two 
types ('positive' and 'negative') cannot be based on the 
Buerger cells. The Niggli cell must be applied. 

Thirdly, a simple sufficient (but not necessary!) con- 
dition may be formulated for a lattice to have the index 
equal to 1. 

Corollary. Let (1) be a normalized characteristic of 
the lattice L, let the (sharp) inequalities 

141<B, I r / l<A,  Iffl<A 
4 + r / + ( + A + B > 0  

hold. Then the index of L is equal to 1. 
Now let us proceed to the second method. 
Theorem 4. Let (I) be a normalized Buerger charac- 

teristic of the lattice L, let the numbers 

A~, Bk, C~, 4~, rlk, ?.k 

(k = 1 , . . . ,  25) be given by Table 2 where S = A + B + C, 
a = 4 + r/+ (. Then the following holds: 

(a) If 
A s + B s + C s = A + B + C  (6) 

(1 < j  <25), then 

As, Bs, Cs, ~s, r/s, (s (7) 

is a Buerger characteristic of the lattice L.* 
(b) If 

A', ~', C', ~', if, ~' (8) 

is a normalized Buerger characteristic of the lattice L, 
then an integerj  (1 _<j < 25) with this property may be 

* It need not be normalized. 

k A~ 
1 A 
2 A 
3 A 
4 A 
5 A 
6 A 
7 A 
8 A 
9 A 

10 A 
11 A 
12 A 
13 A 
14 A 
15 A 
16 A 
17 B 
18 B 
19 B 
20 B 
21 B 
22 B 
23 C 
24 C 
25 C 

Table 2. Potential Buerger characteristics of a lattice 

Bk C~ ~ rl~ 
B C ~ 
B A+C+rl  ~+~ 2A+r/ 
B A + C - r l  - ~ + ~  2A-r l  
B B + C + ~  2B+~ x r/+~" 
B B + C - ~  2 B - ~  -r l+~ 
B S + a  2B+~+~  2A+r /+ (  
C A + B + ~  ~+rl 2A+~ 
C A + B - ~  - ~ + t l  2A--~ 
C B + C + ~  2C+~ r/+~ 
C B + C - ~  - 2 C + ~  -~I+~ 
C S + a  2C+~+r /  2A+r/+~ 
A+ B+~ B + C + ~  2 B + a  ~I+~" 
A+ B+~ S+~r 2A+2B+cr+~ 2A+r/+~ 
A + B - ~  B + C - ~  - - 2 B + ~ - r / + ~  -~1+~ 
A + C + ~l S+¢r 2 A + 2 C + a + r /  2A+t /+~ 
A + C - q  B + C - ~  2 C - ~ - r / + ~  - t ] + ~  
C A + B + ~  ~+~1 2B+~ 
C A + B - ~  -~+r l  - 2 B + ~  
C A + C - t l  - 2 C + r /  - ~ + ~  
A + B+~ S +~r 2 A + 2 B + a + f f  2B+~+ff 
A + B - (  A + C - t ]  2 A + ~ - t / - (  - ~ + ~  
A + C - t l  B + C - ~  2 C - ~ - r / + (  2 B - ~  
A + B - ~  A + C - t l  2A + ~ - - t / - ~  - 2 C + t /  
A + B - ~  B + C - ~  - 2 B + ~ - t / + ~  - 2 C + ~  
A+C+r/ S+o" 2A+2C+a+r/  2C+~+r/ 

~ k  

t/ 
J/ 

t/ 
2A +~ 
2A+~ 
2A-~ 
2A+t/ 
2A- t /  

2B+~ 
--2B+~ 
- ~ + (  
- ~ + v  
- ~ + ~  

2C+q 
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found: If we normalize the sequence (7), we get the 
sequence (8). 

More plainly: If we pick all the j ' s  from Table 2 for 
which (6) is true and normalize the corresponding se- 
quences (7), we get all normalized Buerger characteris- 
tics of the lattice L (some of them, possibly, several 
times). We have always to go through the whole of 
Table 2, unlike Table 1 where we stop when the num- 
bers j ,  h, p, q are found. The data of Table 2 can be 
stored in a computer and therefore the method is par- 
ticularly convenient when the lattice is given numeri- 
cally. 

Niggli cell 

The cell based on the reduction of positive definite 
quadratic forms will be referred to as the Niggli cell. 
It has an enormous advantage over all other kinds of 
cells since it is unique. However, it cannot be obtained 
by means of a simple algorithm and therefore other 
kinds of cells have been preferred. 

The relationship between the Niggli and Buerger cell 
is simple. The Niggli cell is always a Buerger cell, but 
the opposite is in general not true. We can only state 
that one (and only one) of the Buerger cells is a Niggli 
cell. Thus if the index of a lattice is equal to 1, then its 
Buerger cell is simultaneously a Niggli cell. The above 
corollary gives sufficient (but not necessary) conditions 
for a cell to be a Niggli one. 

It is, in fact, a matter of convenience which of the 
Buerger cells is chosen to be the Niggli cell. The com- 
monly accepted conditions are the following:* 

i f ~ = B ,  then ( < 2 r / ,  
i f r / = A ,  then ( < 2 ~ ,  
i f ( = A ,  then r /<2~ ,  
i f ~ = - B ,  then ~ = 0 ,  
i f r / = - A ,  then ( = 0 ,  
i f ( = - A ,  then t / = 0 ,  
i f ~ + r / + ( + A + B = 0 ,  

then 2(A + r/) + ~ < 0. 

Applying them we can easily indicate the Niggli cell if 
all Buerger cells are known. This was done in Table 1 
where the Niggli cells are denoted by the letter N. They 
correspond always to the values ~kl, r/kx, (kl (k=  
1 , . . . ,  28). The remaining Buerger cells may be con- 
verted into the Niggli cell by means of the matrices 
Mk, (n = 2 , . . . ,  ik). These matrices can be also used for 
the mutual transformation of two arbitrary Buerger 
cells (via the Niggli cell). 

Santoro & Mighell (1970) published a table of trans- 
formation matrices which enable one to find the Niggli 
cell if a Buerger cell of the lattice is known. However, 
their procedure does not yield in general the Niggli cell 
by the first application and reiterations may be neces- 
sary. 

* Supposing (1) is a normalized characteristic of the Buerger 
cell in question. 

Indices of particular lattices 

The application of the Niggli forms enables one to as- 
certain the index of any of the 14 types of Bravais lat- 
tice. Table 3 shows the result. The conditions in pa- 
rentheses (relating to the conventional cell) are necessary 
and sufficient for the preceding index to occur. How- 
ever, for monoclinic and triclinic lattices these condi- 
tions are not explicitly written, since they are too com- 
plicated. Besides the conventional cell is here not 
unique unless additional conditions are imposed. 

Table 3. Indices o f  the 14 types o f  Bravais lattice 

Lattice type Index 
Simple cubic 1 
Face-centred cubic 2 
Body-centred cubic 1 
Simple tetragonal 1 
Body-centred tetragonal* 1, 2 (2a 2 = 3c 2) 
Simple orthorhombic 1 
Base-centred orthorhombic 1 
Face-centred orthorhombict 1, 2 (3a2= b 2) 
Body-centred orthorhombict 1, 2 (3a z - b 2 < c 2 < 3b 2 - a 2) 

3 (3a 2=b z+c z or 
3b 2 = a 2 + c 2) 

Hexagonal 1 
Trigonal 1, 2 (0c < 60 °) 
Simple monoclinic 1 
Base-centred monoclinic 1, 2, 3 
Triclinic 1, 2, 3, 4, 5 

* Assuming a=b 
t Assuming a < b < c 

On the whole it is apparent that the ambiguity of the 
Buerger cells - though not exceptional - is not partic- 
ularly frequent which may, perhaps, account for the 
fact that it was discovered relatively late and not in full 
extent. In seven of the 14 types the Buerger cell is 
always unique; in three types it is either unique or 
double; in one type (f.c.c.) there are always two different 
Buerger cells. No more than three types possess the 
index 3 and the highest values 4 and 5 are reserved for 
triclinic lattices only. 

Example 

Suppose the lattice L has a primitive cell characterized 
by 

a = 2 . 0 0 0 ,  b = 1 1 . 6 6 ,  c = 8 . 7 1 8 ,  
~=139°40 ', f l=152°45 ', 7=  19°24 ' . 

Then 

A = 4 ,  B =  136, C =  76, ~ = 15----5, r/= 3-T, ~=44 

stands for a characteristic of this lattice the error being 
nowhere greater than 0.05 %. Applying the Algorithms 
N and B according to Theorem 2 we get successively 
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A B C ~ r/ ( j 
N2 4 136 76 155 31 44 
N3 4 76 136 155 44 31 
B2 4 76 136 155 44 31 
N2 4 76 57 3 13 31 1 
B3 4 57 76 3 31 13 
N2 4 57 16 4--9 T 13 4 
N3 4 16 57 4-9 13 T 
B2 4 16 57 49 13 1 
N3 4 16 23 15 11 1 2 
B 3 4 16 23 1--5 1-1 T 
N2 4 16 16 1--6 3 T T 

4 16 16 1-6 T 

The first column indicates the points of the algorithms 
which are applied to the sequences in the same row. 
Since N2, N3 mean merely change of values and signs, 
we have actually carried out 4 steps: B2, B3, B2, B3. 
The values 4 and 2 of t h e j  show that  the application of  
the function entier has saved four other steps. 

The final sequence 

4, 16, 16, 16, 1, 3 (9) 

is a normalized Buerger characteristic of L. If we take 
notice of  the fact that  for these values 

A < B = C ,  ~ = - B ,  

we can soon ascertain, running through Table 1, that  
(5) is fulfilled for j = 2 0 ,  h = 3 ,  q = 2 .  The condition Cz0 
and the inequalities 0 < p < q _< A demanded in Theorem 
3 are satisfied. (The value p may be taken arbitrarily, 
since it does not intervene.) The value i20 = 5 indicates 
the index of  the lattice. All its normalized Buerger 
characteristics are: 

4, 16, 16, 16, 3, 4 N 
4, 16, 16, 16, 1, 4 
4, 16, 16, 16, 1, 3 
4, 16, 16, 15, 1, 4 
4, 16, 16, 13, 3, 4 .  (10) 

The first corresponds to the Niggli cell. The shapes of  
the 5 different Buerger cells are" 

a b e  o~ fl 
UI: 2 4 4 60o00 ' 79°12 ' 75°31 ' N 
U 2 : 2  4 4 60o00 , 86°25 ' 75°31 ' 
Ua: 2 4 4 120000 ' 93035 , 100°48 ' 
0"4:2 4 4 117°57 ' 93°35 ' 104o29 ' 
Us: 2 4 4 113°58 ' 100048 , 104029 , 

If the Niggli cell U1 is associated with the vectors a, b, 
c, then the other Buerger cells are associated with the 
following triplets (make inverse matrices to 
M20.2, • . . ,  M20,5)" 

~ : a ,  b, b - c  
~ :  a , - c , - b + c  
~ :  a , - a + b , - b + c  
~ :  a , - a + b , - c .  

Now let us try the second method.  We start again 
with the values (9) and apply Table 2. It is not difficult 
to find that the equality (6) holds only for these values of  
j :  1, 4, 6, 9, l l. The corresponding sequences are: 

4, 16, 16, 16, 1, 3 
4, 16, 16, 16, 4, 3 
4, 16, 16, 13, 4, 
4, 16, 16, 16, 4, 1 
4, 16, 16, 15, 4, T.  

Normalizing them we get the sequences (10). 
According to the Niggli representation 

(4 1~ 16) 

(or to Table 3) the lattice is triclinic. 

Proofs 

The proof  of Theorem 3 is fairly long and tedious and 
only its outline will be given here. Let 

a, b, c (I I) 

be lattice vectors of the lattice L; let the equalities (2) 
hold. Then we say that  (11) is a basis (or, alternatively, 
a Buerger basis) of the lattice L, if (1) is a characteristic 
(Buerger characteristic) of L. We say that  the vectors 
(11) are normalized, if (1) is normalized. 

Our idea is to compile an auxiliary table which would 
list (under the given conditions) for any normalized 
Buerger basis all remaining normalized Buerger bases 
of  the same lattice. It should then be possible, starting 
from this auxiliary table, to reach Table 1. 

Thus, in the first place, we are interested in the rela- 
t ionship between two normalized Buerger bases of a 
lattice. If (11) and 

a', b', c' (12) 

are two such bases, then 

a'  = mHa + m12 b +/~713C 
b' -- m2ta + m22b + m23c 
c' = mala 4- m32b 4- ma3c (1 3) 

with integral coefficients mik , and the determinant  equal 
to _+ 1 may be written. But somewhat more can be 
stated. 

L e m m a  1. Let (11), (12) be normalized Buerger bases 
of the lattice L; let (13) hold. Then the numbers m~k 
( i , k=  1,2,3) assume only the values 1,0,T. 

L e m m a  2. Let (l 1) be a normalized Buerger basis of 
the lattice L, h, k, l integers, r = ha + kb + lc. In this case 

if l :A0, then Irl >-Icl, 
i f / = 0 ,  k-C0,  then Irl>-Ibl • 

These two lemmas are the main tools for the con- 
struction of the auxiliary table. They have been proved 
by the author  (Gruber,  1970). 

Hence in the course of this proof  we shall assume 
that (11), (12) are two normalized Buerger bases of a 
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lattice L. Notation (2) will be applied. Analogously we 
denote 

14 '=a  '2, B ' = b  '2 C ' = c  '2 
~ ' = 2 b ' .  c', r / ' = 2 a ' ,  c' , f f '=2a ' ,  b' 

so that 
A=A', B=B', C=C'. (14) 

The proof falls into four parts according to the in- 
equalities 

A=B=C,  A=B<C,  A<B=C,  
A < B < C .  (15) 

We shall consider the second case 

A = 8 < c  (I6) 

the others being analogous. According to (3) and (4) 
either 

0 < ~ < _ r / < A ,  
0<(_<A (17) 

o r  
- A _ < q < ~ < 0 ,  - A _ < ( < 0 ,  

~ + r / + ( + Z A  > 0 .  (18) 

Similar inequalities are valid for the quantities ~', r/', 
('. (A sketch illustrating the set of all points [4, r/, ~] ful- 
filling (17), or alternatively (18) is useful at this point.) 

From Lemmas 1 and 2 it follows that any of the vec- 
tors a', b' must assume one of the following 8 values: 

Ja, Jb, J a + A b  (IJI=IAI--1) .  (19) 

For the vector c' we have at most these 18 possibilities 

Jc, J a + A c ,  J b + A c ,  J a + A b + A c  

( I J [=[AI=IAI= 1). 
But the cases 

c ' = J a + A b + A c  

where either J ¢ A  or J # A  are in fact excluded. If it 
were e.g., 

c' = a + b -  c (20) 

we should get [squaring (20) and using (14), (16)] 

~ + r / - ( - 2 A  = 0  

which is not in agreement with (17), (18). Thus 12 pos- 
sibilities 

Jc, Ja+Ae ,  Jb+Ac,  6 (a+b+e)  (21) 

remain for e'. The expressions Ja+z lb  for a', b' and 

J a + A e ,  J b + A c ,  J ( a + b + e )  (22) 

for c' are rather strong restrictions. If  either a' or b' is 
equal to Ja +Ab, then 

~= - J A A  . (23) 

If  c' is equal to the expressions of (22), we get 

r/= - J A A  

o r  
~= - J A A  (24) 

o r  
~+r /+ f f+2A = 0  

respectively. 
Now we have to take all possibilities where a', b' as- 

sume the values (19) and c' the values (21) and decide 
which of them are admissible under the assumption 
that (l 1), (12) are normalized Buerger bases of the 
lattice. Let us perform one case in detail, e.g., 

a ' = 6 ( a - b ) ,  b ' = A a ,  c ' = A ( b - c ) .  (25) 

It must be [see (23), (24)] ~ = ( = A .  Then (17) necessi- 
tates r/= A as well. With these values we get from (25) 

~ ' = 0 ,  r f = - J A A ,  ( '=JAA. 

But ~', r/', ( '  must fulfil inequalities similar either to 
(17) or to (18). This may occur only if J =  - A = A  and 
then the determinant of (25) is equal to J. This means: 
the relations (25) are valid only if ~ = r / = ( = A  and J =  
- A = A, and in this case they transform the normalized 
Buerger basis (11) into another normalized Buerger 
basis of the same lattice. In this way one entry of the 
auxiliary table has been provided. When all possibilities 
in all four cases (15) are exhausted, the auxiliary table is 
complete. 

Let K denote the number of its entries. The ith entry 
consists of a condition C~ and two triplets 

Jai, Jbs, Jet ( IJ l= l ) .  (26) 

(In the above case C~ reads ~=11=~=A=B<C and 

a t = a - b ,  b t = - a ,  c t = b - c ) .  

If the condition C~ is fulfilled, then, supposing (11) is a 
normalized Buerger basis of L, (26) are also such bases. 
On the other hand if (11) as well as (12) are normalized 
Buerger bases of L, then such integers i, J (1 <i<K, 
IJI = 1) exist that 

a ' = J a i ,  b ' = J b t ,  c '= Jc t  

the condition C; being fulfilled. 
We do not present here the auxiliary table explicitly 

since it is too extensive. Applying it we can compile 
Table 1 for which the propositions of Theorem 3 are 
true. Thus the proof of this theorem may be considered 
complete. 

The proof of Theorem 4 is based on the auxiliary 
table as well. First we omit from the auxiliary table 
all those triplets (26) for which 

b t . c i = b . c ,  a t . c t = a . c ,  a t . b t = a . b  

hold supposing (1 l) is a normalized Buerger basis and 
the condition C~ is fulfilled. Then we divide the re- 
maining triplets into classes in this way: two triplets be- 
long to the same class if and only if they either consist 
of the same vectors (regardless of their order) or if this 
may be achieved by changing the sign of some vectors 
of these triplets. Having done this we choose in any 
class a 'representative triplet' in an arbitrary way and 
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retain it, deleting the remaining triplets from the list. 
Finally we add the triplet (11). Thus we get a set of 25 
triplets. We relabel them from 1 to 25. This relabelling 
and the choice of the representative triplets may be done 
in such a way that Table 2 arises if 

At,=a~, Bk=b z, Ck=e~, 

~k=2bk.ck ,  r /k=2ak.ck,  (k=2ak .bk  

(k= 1 , . . . ,  25). The construction of this Table shows 
directly the way to the proof of Theorem 4. 

The main results of this paper were obtained during 
the author's stay at the University of Surrey, Guildford, 
Surrey, England, which was made possible by a grant 

from the Scientific Research Council. The author re- 
calls with pleasure the fruitful discussions with Dr A. 
Crocker from this University. His thanks are also due 
to Dr A. Linek of the Czechoslovak Academy of 
Sciences for drawing his attention to recent papers 
concerning this subject. 
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The Performances of Neutron Collimators. II. Choice of the Parameters 
of a Primary Collimator 
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The performances of a neutron primary Soller collimator are reviewed, taking into account the finite 
dimensions of the neutron source. The possibility of choosing suitable values of the parameters to op- 
timize the performances of the collimator, both in intensity and in flux, is shown. A 'figure of merit' for 
a collimator is discussed. Experimental data are in fair agreement with calculations. 

1. Introduction 

Evaluation of the geometrical parameters of the pri- 
mary collimator is of utmost importance in the design of 
a neutron diffractometer or crystal spectrometer, since 
the intensity transmitted by this collimator strongly 
affects the overall performance of the experimental set- 
up. 

Szab6 (1959, 1960) first studied this problem in detail 
and Jones (1962) developed a criterion for the optimi- 
zation of the number of the channels o fa  Soller collima- 
tor when the main geometrical parameters were preset. 

In the present work we show that the use of the trans- 
mission function ofa  Soller collimator outlined in a pre- 
vious paper (Rossitto & Poletti, 1971; this paper will 
be referred to as NC-I)  allows a complete insight into 
the problem, showing more clearly the dependence of 
the transmitted intensity on the parameters of the colli- 
mator and the influence of the finite dimensions of the 
neutron source. 

* G.N.S.M. Researcher. 

We then propose a procedure for choosing the di- 
mensions of the collimator housing and, finally, we de- 
fine and discuss a 'figure of merit' for the collimator. 
We also report experiments, whose results fit the cal- 
culated values fairly well. 

2. Transmitted-intensity evaluation 

Let eh, ev, L be respectively the width, height and length 
of a reactor channel (rectangular in section) bounding 
an isotropic neutron source of density C (neutrons/ 
cm z . s terad,  see), in which a housing accommodates a 
Soller collimator of height h and total internal width 
Stot. In the following, h and S,ot will be referred to as the 
collimator-housing parameters. The value of the hori- 
zontal angular divergence c~ has to be set according to 
the kind of experiment planned and can be obtained 
simply by choosing a suitable length (and hence num- 
ber of slits n) for the Soller collimator. 

First of all, we are interested in determining the 
collimator geometrical factor G, the ratio between the 
transmitted intensity and the source density C. As in 


